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Abstract

Lightweight concrete (LWC) has become a buzzword in modern construction due to its unique properties, such as low density.
thermal insulation, and sufficient strength, making it ideal for applications in tall buildings, bridges. and marine structures.
However, predicting its performance remains a significant challenge due to the complexity of its mix design and the influence
of external factors such as curing conditions. Traditional empirical methods and standalone AT models fail to leverage the vast
amount of unstructured textual data available in standards, research papers, and technical reports. This results in suboptimal
performance of predictions. This study investigates into a hybrid artificial intelligence (AI) framework that integrates natural
language processing (NLP) and deep learning to address these limitations. The NLP module uses material properties such as
water-to-cement ratio, aggregate size, and curing conditions from experimental data. to form comprehensive input datasets.
A deep learning model, utilising convolutional neural networks (CNNs) and long short-term memory networks (LSTMs),
predicts critical performance parameters, including compressive strength, thermal conductivity, and durability. The hybrid
model achieved significant improvements, with 91.2% accuracy for compressive strength predictions and 89.4% accuracy for
durability, outperforming both traditional regression and standalone deep learning approaches. The study also highlights the
practical implications of this approach, such as cost reduction in testing, optimisation of mix designs, and enhanced
sustainability. By bridging the gap between computational intelligence and civil engineering practices, this hybrid Al
framework sets a precedent for data-driven innovations in LWC design, paving the way for efficient and resilient construction
solutions.

Keywords: Lightweight concrete, hvbrid AI model, durability prediction, deep learning, natural language processing.
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1. Introduction

Lightweight concrete (LWC) has gained widespread
adoption in civil engineering due to its ability to balance
strength with reduced density (Lei et al., 2024) . This
property makes it highly advantageous for applications
where minimising self-weight is critical. such as in high-
rise buildings, long-span bridges, and floating marine
structures. Its low density also enhances thermal
insulation, contributing to energy efficiency and
sustainability in construction (Vivek Vardhan & Srimurali,
2016b). Despite these benefits, the performance of LWC
is highly sensitive to variations in its mix design and

external factors such as curing conditions and
environmental exposure, making its prediction
challenging.

The properties of LWC, including compressive strength,
thermal conductivity, and durability, are influenced by the
proportions of cement, water, aggregates. and admixtures.
Traditional approaches to predicting these properties often
rely on empirical models or experimental testing, which
can be time-consuming, resource-intensive, and limited in
generalisation (Vivek Vardhan & Srimurali, 2016a).
Furthermore, a vast amount of data on LWC exists in
unstructured formats, such as engineering standards,
technical reports, and academic papers. This data is often
underutilised. as conventional models fail to extract and
process meaningful information from textual documents.

Advancements in artificial intelligence (AI) have opened
new avenues for addressing these challenges. Deep
learning models have shown significant potential in
predicting non-linear behaviours of materials by learning
from numerical data (Sounthararajan et al., 2020; Vardhan
& Srimurali, 2018). Similarly, natural language processing
(NLP) offers the capability to extract valuable information
from unstructured textual data, making it possible to
incorporate a broader range of features into predictive
models(Varalakshmi et al., n.d.). However, standalone

implementations of these techniques are often insufficient,
as they do not fully exploit the synergy between numerical
and textual data sources.

This study introduces a hybrid AI framework that
integrates NLP and deep learning to predict key
performance parameters of LWC(Manoj Kumar et al..
n.d.). By combining features extracted from textual data
with numerical inputs, the framework enhances prediction
accuracy and provides actionable insights for mix design
optimisation (Sravani et al., n.d.). The hybrid model not
only addresses the limitations of traditional methods but
also reduces the dependency on extensive experimental
testing, offering a cost-effective and efficient alternative
for civil engineering applications.

The findings from this study highlight the transformative
potential of hybrid AI in LWC research and
practice(Mabureddy et al., n.d.). Beyond improving
prediction accuracy, the framework facilitates data-driven
decision-making, enabling engineers to optimise mix
designs, reduce costs, and enhance the overall
sustainability of construction projects(Donthi et al., 2024).
This research contributes to the growing field of AI
applications in civil engineering, setting the stage for
future innovations in material design and performance
prediction.

2. Mechanical and Engineering Properties of
Lightweight Concrete

To better understand the performance of lightweight
concrete (LWC) and its critical importance in civil
engineering, the key mechanical and engineering
properties are summarised in Table 1. These properties are
essential for wvarious applications, including high-rise
buildings, bridges. and marine structures, where reduced
density and adequate strength are necessary (Bergamonti
et al., 2024).

Table 1: Engineering Properties of Lightweight Concrete

Typical Testing Importance in
S.No. | Property Application Range Standard ClVlll ) Reference
Engineering
1 Compressive Structural 15-40 IS 516 E}";Szgilrm for (Lei et al.
Strength stability MPa A | 2024
capacity
. .| 800- Optimises .
. Reduction in IS 2386 (Ben Fraj et
. - -
2 Density dead loads 2000 | papgqrpy | Structural al.. 2010)
kg/m weight
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3 Thermal Insulated 0.1-0.4 IS 3346 Ellllellances (Turkey et
Conductivity building walls | W/mK 2y al.. 2024)
efficiency
Long-term Resists .
4 Durability structural 50_‘100 IS 456 weathering and (Liao et al.,
) years 2024)
performance damage
-y Ensures
- | 2 3
5 Fire Resistance S.;_a.fety _111_111gh '_4‘_ IS 1642 structural (S. Yang et
rise buildings | hours . . al.. 2023)
mtegrity
6 Modulus of | Deformation 10-30 IS 516 gﬁiﬁ:ﬁ}es (Zhang et
Elasticity under stress GPa L al.. 2024)
behaviour

The data in Table 1 shows the diverse engineering demands met by LWC, including its capacity to reduce structural weight

while maintaining sufficient mechanical performance.
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Figure 1: Applications of Lightweight Concrete in Civil Engineering

The percentage use of lightweight concrete across
different structural applications as shown in Figure I,
reflects its versatility in the construction industry. This
chart emphasises the widespread adoption of LWC in
projects such as high-rise buildings. bridges, and
infrastructure requiring advanced durability and insulation
properties.

3. Methodology

Compressive strength was tested using the standard cube
testing method as per IS 516, where concrete specimens
were subjected to uniaxial compressive loads until failure.
Density was measured following IS 2386 (Part III) by
calculating the mass-to-volume ratio. Thermal
conductivity was determined using a thermal conductivity
meter in accordance with IS 3346, while modulus of
elasticity was assessed through stress-strain behaviour as
per IS 516. Durability parameters, including water
absorption and rapid chloride permeability, were
evaluated using IS 456 and ASTM C1202. ensuring
comprehensive material property characterization.

1814 Afr. J. Biomed. Res. Vol. 27, No.4s (November) 2024

This study adopts a hybrid Al framework to predict the
performance parameters of lightweight concrete (LWC)
by integrating natural language processing (NLP) for
extracting material properties from textual data with deep
learning for predictive modelling. The methodology is
divided into three primary stages: data preprocessing.
model development, and validation. The workflow of the
hybrid AT model is depicted in Figure 2. detailing the
input, processing, and output stages.

3.1 Framework for Hybrid AI

The framework begins with the collection of data from two
distinct sources: numerical datasets and unstructured
textual documents. Numerical data, including mix
proportions and experimental results, were gathered from
published experimental studies. Textual data, extracted
from standards such as IS 10262, ASTM C330, and
technical reports, provided additional insights into
material properties like water-to-cement ratios, aggregate
characteristics, and curing conditions. These two data
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streams were combined into a unified dataset after
preprocessing.

Figure 2 illustrates the workflow of the Hybrid AT Model
for predicting lightweight concrete properties. The process
begins with the "Start/Input" block, where data inputs,
including numerical and textual information, are gathered.
It progresses to "Text Processing (NLP)" for extracting
material properties from textual data sources. The
workflow continues to "Feature Extraction." which

integrates numerical and NLP-derived features, followed
by the "Deep Learning Model" block. where these features
are processed to predict properties such as compressive
strength and durability (Diksha et al.. 2024). The results
are presented in the "Output" block, which is further
evaluated in the "Decision: Accuracy?" block. Based on
the evaluation, if the accuracy is satisfactory, the process
moves to the "End." If not, the workflow loops back to the
"Feature Extraction" block for optimization.

Start/Input

Text Processing (NLP)

A vy
g I
Feature Extraction

_—

' ™
Deep Learning Model

p- 1 >y

l

Output

|
l

No - Yes

End

Figure 2: Workflow of the Hybrid AI Model

NLP techniques played a wvital role in extracting
engineering-relevant data from textual sources. For
example, curing durations were linked to durability
metrics, while admixture proportions were associated with
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flowability and strength optimisation. The processed
features are summarised in Table 2, showcasing the
extracted civil engineering properties. their applications.
and value ranges.
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Table 2: Material Properties and their Civil Engineering Applications

S.No. | Extracted Source Application Value Processing Reference
Property Document Range Technique
1 Water-to- IS 10262, | Strength 0.35-0.55 |NER (Bai et al., 2023)
Cement Ratio ASTM C330 prediction
2 Aggregate Size | Research papers | Density and | 10-20 mm | Tokenisation (Bright Singh &
workability Madasamy, 2022)
3 Admixture Type | Technical Flowability Plasticisers | Dependency (Sajid & Kiran, 2024)
reports optimisation parsing
4 Curing 1S 456 Durability 7-28 days | Context (Celikten & Erdogan.
Conditions assessment extraction 2022)
5 Mix Proportions | Eurocode  EN | Material 1:2:4, 1:3:6 | Text (Zhong et al.. 2023)
206 optimisation summarisation

3.2 Deep Learning for Property Prediction

The deep learning module utilised a combination of
convolutional neural networks (CNNs) and long short-
term memory networks (LSTMs)(Abdar et al., 2021) .
CNNs were employed to identify patterns within the
numerical data, while LSTMs captured sequential
dependencies, such as the effect of curing duration on
compressive strength. The input features comprised both
numerical data, such as mix proportions, and text-derived
properties from the NLP module (Ling et al., 2024). The
model was trained using a dataset of 500 samples, with an
80:20 split for training and testing. Hyperparameter tuning
was conducted to optimise the model's performance.

3.3 Model Validation

The model's performance was evaluated using metrics
such as R-squared, Mean Absolute Error (MAE), and Root
Mean Squared Error (RMSE) (de Myttenaere et al., 2016).
These metrics quantified the accuracy and reliability of the
predictions for compressive strength, density. and
durability. Validation against experimental results ensured
the model's applicability to real-world scenarios,
demonstrating its effectiveness in both predicting LWC

properties and reducing the reliance on extensive physical
testing.

4. Results and Discussion

The hybrid AI framework demonstrated significant
improvements in predicting lightweight concrete (LWC)
properties compared to traditional regression and
standalone deep learning models. The integration of
numerical and text-derived inputs allowed the model to
process a richer dataset, enhancing its ability to capture
complex relationships among variables such as water-to-
cement ratio, aggregate size, and curing conditions.

For compressive strength, the hybrid AT model achieved
an accuracy of 91.2%, outperforming traditional
regression (78.5%) and standalone deep learning methods
(85.6%), as detailed in Table 3. Similarly, durability
predictions achieved 89.4% accuracy, with lower mean
absolute error (MAE) and root mean squared error
(RMSE) values compared to alternative approaches
(Sounthararajan et al., 2020). These improvements
demonstrate the hybrid model's superior ability to
generalise across diverse input conditions, leveraging both
structured numerical data and unstructured textual
information.

Table 3: Detailed Performance Metrics for Various Prediction Models by Property

S.No. Property Model Type Accuracy (%) | MAE RMSE R-squared
1 Compressive Strength Traditional Regression 78.5 42MPa |58MPa |0.72
2 Compressive Strength Standalone Deep Learning | 85.6 3.1 MPa |42MPa |0.84
3 Compressive Strength | Hybrid AT Model 91.2 25MPa |3.8MPa |0.91
4 Durability Traditional Regression 70.4 6.5 % 8.0 % 0.65
5 Durability Hybrid AT Model 89.4 4.1% 5.6 % 0.88

The hybrid AT model’s higher accuracy can be attributed
to its dual approach of combining CNNs for processing
numerical data and LSTMs for text-based features. By
learning spatial and sequential patterns. the model
effectively accounts for the effects of curing conditions
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and environmental exposure on material properties, which
were often underrepresented in previous regression-based
studies.

The correlation between predicted and experimental
compressive strengths is illustrated in Figure 3, where the
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closeness of data points to the line of equality reflects the
model’s reliability. Minor deviations observed in the
predictions are likely due to inherent variability in
experimental data, such as inconsistencies in mix

-e- Predicted Values
50 | —® Experimental Values

45t

40t

Compressive Strength (MPa)

30F

proportions and testing conditions. This outcome aligns
with the findings of (Wei et al., 2012). who noted similar
improvements when integrating diverse data types in
material prediction models.

6 8 10
Sample Number

Figure 3: Predicted vs Experimental Compressive Strength

The Figure 3. shows the alignment between predicted
compressive strengths and experimentally measured
values, with most predictions deviating by less than =5%.
The results show that the model has ability to capture the
non-linear dependencies inherent in LWC performance,
reducing the need for extensive physical trials. This
capability is particularly valuable for large-scale projects
requiring rapid and reliable design optimisation.

The hybrid AI framework also addresses several key
challenges in LWC design, as summarised in Table 4.

These challenges, including high wvariability in mix
designs and the lack of standardised AI integration in
engineering codes, have ftraditionally hindered the
adoption of data-driven approaches in civil engineering.
The predictive optimisation provided by the hybrid model
mitigates these issues by delivering actionable insights
into mix design parameters, enabling engineers to achieve
target performance metrics with minimal experimental
iterations.

Table 4: Key Challenges in LWC Design and AI-Based Solutions

S.No. Challenge Description Al-Based Solution

1 Material Variability Complex dependency on mix design Property prediction model
2 Experimental Cost High cost of testing AT predictions

3 Time for Optimisation Slow iterative design processes Predictive optimisation

4 Lack of Standards Limited AT integration in codes Standardisation roadmap

By streamlining the LWC design process. the hybrid model minimises experimental costs and improves the overall efficiency
of engineering workflows. This advancement aligns with the vision of previous researchers, such as (Y. Yang et al., 2023),
who advocated for integrating computational tools into material design practices.

The correlation between predicted and experimental durability performance is visualised in Figure 4. which shows the
clustering of data points along the line of equality. This indicates a high level of agreement between predicted and observed
values, underscoring the model’s robustness in capturing long-term performance metrics.
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Figure 4: Correlation Between Experimental and Predicted Durability Performance

The relationship between durability predictions from the
hybrid AT model and experimental results are depicted in
Figure 4. This figure highlights the strong agreement
between the two.

The ability of the hybrid model to integrate curing
conditions and environmental exposure data into its
predictions ensures that durability assessments are
comprehensive and reflective of real-world scenarios. This
feature distinguishes it from traditional approaches, which
often lack the granularity required for accurate long-term
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